Stability analysis of electrical RLC circuit described by the Caputo-Liouville generalized fractional derivative

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit Fractional Differential Equations via the Liouville–Caputo Derivative

We study an initial value problem for an implicit fractional differential equation with the Liouville–Caputo fractional derivative. By using fixed point theory and an approximation method, we obtain some existence and uniqueness results.

متن کامل

Analytical Solutions of the Electrical RLC Circuit via Liouville-Caputo Operators with Local and Non-Local Kernels

José Francisco Gómez-Aguilar 1,*, Victor Fabian Morales-Delgado 2, Marco Antonio Taneco-Hernández 2, Dumitru Baleanu 3,4, Ricardo Fabricio Escobar-Jiménez 5 and Maysaa Mohamed Al Qurashi 6 1 CONACYT-Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, Cuernavaca 62490, Mexico 2 Unidad Académica de Matemáticas, U...

متن کامل

Fractional Descriptor Continuous-Time Linear Systems Described by the Caputo-Fabrizio Derivative

The Weierstrass–Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor continuous-time linear systems described by the Caputo–Fabrizio derivative. A method for computing solutions of continuous-time systems is presented. Necessary and sufficient conditions for the positivity and stability of these systems are established. The discussion is illustrated ...

متن کامل

Asymptotical Stability of Nonlinear Fractional Differential System with Caputo Derivative

This paper deals with the stability of nonlinear fractional differential systems equipped with the Caputo derivative. At first, a sufficient condition on asymptotical stability is established by using a Lyapunov-like function. Then, the fractional differential inequalities and comparison method are applied to the analysis of the stability of fractional differential systems. In addition, some ot...

متن کامل

Fractional Hamilton formalism within Caputo ’ s derivative

In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canoni-cal Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Alexandria Engineering Journal

سال: 2020

ISSN: 1110-0168

DOI: 10.1016/j.aej.2020.01.008