Stability analysis of electrical RLC circuit described by the Caputo-Liouville generalized fractional derivative
نویسندگان
چکیده
منابع مشابه
Implicit Fractional Differential Equations via the Liouville–Caputo Derivative
We study an initial value problem for an implicit fractional differential equation with the Liouville–Caputo fractional derivative. By using fixed point theory and an approximation method, we obtain some existence and uniqueness results.
متن کاملAnalytical Solutions of the Electrical RLC Circuit via Liouville-Caputo Operators with Local and Non-Local Kernels
José Francisco Gómez-Aguilar 1,*, Victor Fabian Morales-Delgado 2, Marco Antonio Taneco-Hernández 2, Dumitru Baleanu 3,4, Ricardo Fabricio Escobar-Jiménez 5 and Maysaa Mohamed Al Qurashi 6 1 CONACYT-Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, Cuernavaca 62490, Mexico 2 Unidad Académica de Matemáticas, U...
متن کاملFractional Descriptor Continuous-Time Linear Systems Described by the Caputo-Fabrizio Derivative
The Weierstrass–Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor continuous-time linear systems described by the Caputo–Fabrizio derivative. A method for computing solutions of continuous-time systems is presented. Necessary and sufficient conditions for the positivity and stability of these systems are established. The discussion is illustrated ...
متن کاملAsymptotical Stability of Nonlinear Fractional Differential System with Caputo Derivative
This paper deals with the stability of nonlinear fractional differential systems equipped with the Caputo derivative. At first, a sufficient condition on asymptotical stability is established by using a Lyapunov-like function. Then, the fractional differential inequalities and comparison method are applied to the analysis of the stability of fractional differential systems. In addition, some ot...
متن کاملFractional Hamilton formalism within Caputo ’ s derivative
In this paper we develop a fractional Hamiltonian formulation for dynamic systems defined in terms of fractional Caputo derivatives. Expressions for fractional canonical momenta and fractional canoni-cal Hamiltonian are given, and a set of fractional Hamiltonian equations are obtained. Using an example, it is shown that the canonical fractional Hamiltonian and the fractional Euler-Lagrange form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Alexandria Engineering Journal
سال: 2020
ISSN: 1110-0168
DOI: 10.1016/j.aej.2020.01.008